Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.569
Filtrar
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
2.
Life Sci ; 345: 122606, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574884

RESUMEN

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Animales , Humanos , Caenorhabditis elegans/metabolismo , Longevidad , Proteína GAP-43 , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales Modificados Genéticamente/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proyección Neuronal
3.
Biomed Pharmacother ; 174: 116460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520864

RESUMEN

Ischemic stroke is a common intravascular disease and one of the leading causes of death and disability. The salidroside derivative SHPL-49, which we previously synthesized, significantly attenuates cerebral ischemic injury in a rat model of permanent middle cerebral artery occlusion. To explore the neuroprotective mechanism of SHPL-49, the effects of SHPL-49 on the expression levels of neurotrophic factors in neurons and microglia and the polarization of microglia were investigated in the present study. SHPL-49 activated the brain-derived neurotrophic factor (BDNF) pathway, decreased the number of degenerated neurons, and accelerated neurogenesis in rats with cerebral ischemia. In addition, SHPL-49 promoted the polarization of microglia toward the M2 phenotype to alleviate neuroinflammation. In BV2 cells, SHPL-49 upregulated CD206 mRNA and protein levels and inhibited CD86 mRNA and protein levels. SHPL-49 also increased neurotrophic factor secretion in BV2 cells, which indirectly promoted the survival of primary neurons after oxygen-glucose deprivation (OGD). Proteomics analysis revealed that SHPL-49 promoted growth-associated protein 43 (Gap43) expression. SHPL-49 enhanced synaptic plasticity and increased Gap43 protein levels via activation of the BDNF pathway in the OGD primary neuron model. These results indicate that SHPL-49 prevents cerebral ischemic injury by activating neurotrophic factor pathways and altering microglial polarization. Thus, SHPL-49 is a potential neuroprotective agent.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Proteína GAP-43 , Glucósidos , Microglía , Neuronas , Fármacos Neuroprotectores , Fenoles , Ratas Sprague-Dawley , Receptor trkB , Transducción de Señal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Glucósidos/farmacología , Fenoles/farmacología , Masculino , Ratas , Proteína GAP-43/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Transducción de Señal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Receptor trkB/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Neurogénesis/efectos de los fármacos , Ratones
4.
J Dermatol Sci ; 113(3): 138-147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429137

RESUMEN

BACKGROUND: Postherpetic pain (PHP) is difficult to control. Although Neurotropin® (NTP) and methylcobalamin (MCB) are often prescribed to treat the pain, the efficacy of combined treatment for PHP remains imcompletely understood. OBJECTIVE: In this study, we investigate the combined effects of NTP and MCB on PHP in mice. METHODS: NTP and MCB were administered from day 10-29 after herpes simplex virus type-1 (HSV-1) infection. The pain-related responses were evaluated using a paint brush. The expression of neuropathy-related factor (ATF3) and nerve repair factors (GAP-43 and SPRR1A) in the dorsal root ganglion (DRG) and neurons in the skin were evaluated by immunohistochemical staining. Nerve growth factor (NGF) and neurotrophin-3 (NT3) mRNA expression levels were evaluated using real-time PCR. RESULTS: Repeated treatment with NTP and MCB after the acute phase inhibited PHP. Combined treatment with these drugs inhibited PHP at an earlier stage than either treatment alone. In the DRG of HSV-1-infected mice, MCB, but not NTP, decreased the number of cells expressing ATF3 and increased the number of cells expressing GAP-43- and SPRR1A. In addition, MCB, but not NTP, also increased and recovered non-myelinated neurons decreased in the lesional skin. NTP increased the mRNA levels of NTF3 in keratinocytes, while MCB increased that of NGF in Schwann cells. CONCLUSION: These results suggest that combined treatment with NTP and MCB is useful for the treatment of PHP. The combined effect may be attributed to the different analgesic mechanisms of these drugs.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Neuralgia Posherpética , Polisacáridos , Vitamina B 12/análogos & derivados , Ratones , Animales , Neuralgia Posherpética/tratamiento farmacológico , Factor de Crecimiento Nervioso/metabolismo , Proteína GAP-43/farmacología , Herpes Simple/complicaciones , Herpes Simple/tratamiento farmacológico , ARN Mensajero
5.
J Alzheimers Dis ; 97(4): 1913-1922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38339928

RESUMEN

Background: Cerebral microbleeds (CMB) play an important role in neurodegenerative pathology. Objective: The present study aims to test whether cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) level is linked to CMBs in elderly people. Methods: A total of 750 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had measurements of GAP-43 and CMBs were included in the study. According to the presence and extent of CMBs, participants were stratified into different groups. Regression analyses were used to assess cross-sectional and longitudinal associations between GAP-43 and CMBs. Results: Participants with CMB were slightly older and had higher concentrations of CSF GAP43. In multivariable adjusted analyses for age, gender, APOEɛ4 status, and cognitive diagnoses, higher CSF GAP-43 concentrations were modestly associated with CMB presence (OR = 1.169, 95% CI = 1.001-1.365) and number (ß= 0.020, SE = 0.009, p = 0.027). Similarly, higher CSF GAP43 concentrations were accrual of CMB lesions, associated with higher CMB progression (OR = 1.231, 95% CI = 1.044-1.448) and number (ß= 0.017, SE = 0.005, p = 0.001) in the follow up scan. In stratified analyses, slightly stronger associations were noted in male participants, those 65 years and older, carriers of APOEɛ4 alleles, and with more advanced cognitive disorders. Conclusions: CSF GAP-43 was cross-sectionally associated with the presence and extent of CMBs. GAP-43 might be used as a biomarker to track the dynamic changes of CMBs in elderly persons.


Asunto(s)
Hemorragia Cerebral , Imagen por Resonancia Magnética , Humanos , Masculino , Anciano , Proteína GAP-43 , Hemorragia Cerebral/líquido cefalorraquídeo , Estudios Longitudinales , Estudios Transversales , Imagen por Resonancia Magnética/métodos
6.
Chem Biol Drug Des ; 103(1): e14439, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230778

RESUMEN

A novel curcumin formulation increases relative absorption by 46 times (CurcuWIN®) of the total curcuminoids over the unformulated standard curcumin form. However, the exact mechanisms by which curcumin demonstrates its neuroprotective effects are not fully understood. This study aimed to investigate the impact of a novel formulation of curcumin on the expression of brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), a main component of the glial scar and growth-associated protein-43 (GAP-43), a signaling molecule in traumatic brain injury (TBI). Mice (adult, male, C57BL/6j) were randomly divided into three groups as follows: TBI group (TBI-induced mice); TBI + CUR group (TBI mice were injected i.p. curcumin just after TBI); TBI+ CurcuWIN® group (TBI mice were injected i.p. CurcuWIN® just after TBI). Brain injury was induced using a cold injury model. Injured brain tissue was stained with Cresyl violet to evaluate infarct volume and brain swelling, analyzed, and measured using ImageJ by Bethesda (MD, USA). Western blot analysis was performed to determine the protein levels related to injury. While standard curcumin significantly reduced brain injury, CurcuWIN® showed an even greater reduction associated with reductions in glial activation, NF-κB, and the inflammatory cytokines IL-1ß and IL-6. Additionally, both standard curcumin and CurcuWIN® led to increased BDNF, GAP-43, ICAM-1, and Nrf2 expression. Notably, CurcuWIN® enhanced their expression more than standard curcumin. This data suggests that highly bioavailable curcumin formulation has a beneficial effect on the traumatic brain in mice.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Curcumina , Ratones , Masculino , Animales , Citocinas/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Proteína GAP-43 , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Encefálicas/complicaciones , Inflamación , Modelos Animales de Enfermedad
7.
CNS Neurosci Ther ; 30(4): e14535, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38168094

RESUMEN

INTRODUCTION: Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS: This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS: Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS: Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Traumatismos de la Médula Espinal , Animales , Ratas , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Proteína GAP-43/genética , Proteína GAP-43/metabolismo
8.
Nat Commun ; 15(1): 202, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172114

RESUMEN

In Alzheimer's disease, amyloid-beta (Aß) triggers the trans-synaptic spread of tau pathology, and aberrant synaptic activity has been shown to promote tau spreading. Aß induces aberrant synaptic activity, manifesting in increases in the presynaptic growth-associated protein 43 (GAP-43), which is closely involved in synaptic activity and plasticity. We therefore tested whether Aß-related GAP-43 increases, as a marker of synaptic changes, drive tau spreading in 93 patients across the aging and Alzheimer's spectrum with available CSF GAP-43, amyloid-PET and longitudinal tau-PET assessments. We found that (1) higher GAP-43 was associated with faster Aß-related tau accumulation, specifically in brain regions connected closest to subject-specific tau epicenters and (2) that higher GAP-43 strengthened the association between Aß and connectivity-associated tau spread. This suggests that GAP-43-related synaptic changes are linked to faster Aß-related tau spread across connected regions and that synapses could be key targets for preventing tau spreading in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Disfunción Cognitiva/metabolismo , Biomarcadores/metabolismo
9.
FASEB J ; 38(1): e23340, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031959

RESUMEN

Facial nerve regeneration still lacks a well-defined and practical clinical intervention. The survival of central facial motoneuron is a critical component in the successful peripheral facial nerve regeneration. Endogenous GDNF is vital for facial nerve regeneration according to earlier investigations. Nevertheless, the low endogenous GDNF level makes it challenging to achieve therapeutic benefits. Thus, we crushed the main trunk of facial nerve in SD rats to provide a model of peripheral facial paralysis, and we administered exogenous GDNF and Rapa treatments. We observed changes in the animal behavior scores, the morphology of facial nerve and buccinator muscle, the electrophysiological of facial nerve, and the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the facial motoneurons. We discovered that GDNF could boost axon regeneration, hasten the recovery of facial paralysis symptoms and nerve conduction function, and increase the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the central facial motoneurons. Therefore, exogenous GDNF injection into the buccinator muscle can enhance facial nerve regeneration following crushing injury and protect facial neurons via the PI3K/AKT/mTOR signaling pathway. This will offer a fresh perspective and theoretical foundation for the management of clinical facial nerve regeneration.


Asunto(s)
Axones , Nervio Facial , Ratas , Animales , Ratas Sprague-Dawley , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína GAP-43 , Regeneración Nerviosa/fisiología , Neuronas Motoras/fisiología , Serina-Treonina Quinasas TOR , Transducción de Señal
10.
Neurobiol Aging ; 132: 209-219, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852045

RESUMEN

Apolipoprotein E-ε4 (APOE-ε4) carriers had elevated cerebrospinal fluid (CSF) presynaptic protein growth-associated protein-43 (GAP-43), but the underlying mechanism is not fully understood. We investigated how the APOE-ε4 genotype affects the baseline and longitudinal changes in CSF GAP-43 and their associations with ß-amyloid positron emission tomography (Aß PET), CSF phosphorylated tau 181 (p-Tau181), neurodegeneration, and cognitive decline. Compared to APOE-ε4 non-carriers, APOE-ε4 carriers had higher baseline levels and faster rates of increases in Aß PET, CSF p-Tau181, and CSF GAP-43. Both higher baseline levels and faster rates of increase in CSF GAP-43 were associated with greater baseline Aß PET and CSF p-Tau181, which fully mediated the APOE-ε4 effect on CSF GAP-43 elevations. Independent of Aß PET and CSF p-Tau181, APOE-ε4 carriage was associated with exacerbated GAP-43-related longitudinal hippocampal atrophy and cognitive decline, especially in Aß+ participants (GAP-43 × time × APOE-ε4). These findings suggest that the APOE-ε4 effect on GAP-43-related presynaptic dysfunction is mediated by primary Alzheimer's pathologies and independently correlates to hippocampal atrophy and cognitive decline in the future.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Disfunción Cognitiva , Proteína GAP-43 , Humanos , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteína E4/genética , Atrofia , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Proteína GAP-43/líquido cefalorraquídeo , Proteína GAP-43/metabolismo , Proteínas tau/líquido cefalorraquídeo
11.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37620149

RESUMEN

Neuropathic pain is stubborn and associated with the peripheral nerve regeneration process. Nicotine has been found to reduce pain, but whether it is involved in the regulation of nerve regeneration and the underlying mechanism are unknown. In this study, we examined the mechanical allodynia thermal hyperalgesia together with the peripheral nerve regeneration after nicotine exposure in two rat neuropathic pain models. In the spinal nerve ligation model, in which anatomic nerve regeneration can be easily observed, nicotine reduced anatomic measures of regeneration as well as expression of regeneration marker growth-associated protein 43 (GAP43). In the tibial nerve crush model, nicotine treatment significantly suppressed GAP43 expression and functional reinnervation as measured by myelinated action potential and electromyography of gastrocnemius. In both models, nicotine treatment reduced macrophage density in the sensory ganglia and peripheral nerve. These effects of nicotine were reversed by the selective α7 nicotinic acetylcholine receptor (nAChR) blocker methyllycaconitine. In addition, nicotine significantly elevated expression of PTEN (the phosphatase and tensin homolog deleted on chromosome 10), a key player in both regeneration and pain. Pharmacological interference of PTEN could regulate GAP43 expression, pain-related behaviors, and macrophage infiltration in a nicotine-treated nerve crush model. Our results reveal that nicotine and its α7-nAChR regulate both peripheral nerve regeneration process and pain though PTEN and the downstream inflammation-related pathway.


Asunto(s)
Neuralgia , Nicotina , Animales , Ratas , Nicotina/farmacología , Regeneración Nerviosa , Hiperalgesia/tratamiento farmacológico , Proteína GAP-43 , Inflamación
12.
Neuroscience ; 529: 62-72, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591334

RESUMEN

Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.


Asunto(s)
Isquemia Encefálica , Microglía , Ratones , Animales , Masculino , Microglía/metabolismo , Pericitos/metabolismo , Isquemia Encefálica/metabolismo , Corteza Prefrontal/metabolismo , Cognición , Proteína GAP-43/metabolismo , Isquemia/metabolismo
13.
Environ Sci Pollut Res Int ; 30(38): 88685-88703, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37442924

RESUMEN

This study investigated the possible beneficial role of the bee venom (BV, Apis mellifera L.) against zinc oxide nanoparticles (ZNPs)-induced neurobehavioral and neurotoxic impacts in rats. Fifty male Sprague Dawley rats were alienated into five groups. Three groups were intraperitoneally injected distilled water (C 28D group), ZNPs (100 mg/kg b.wt) (ZNPs group), or ZNPs (100 mg/kg.wt) and BV (1 mg/ kg.bwt) (ZNPs + BV group) for 28 days. One group was intraperitoneally injected with 1 mL of distilled water for 56 days (C 56D group). The last group was intraperitoneally injected with ZNPs for 28 days, then BV for another 28 days at the same earlier doses and duration (ZNPs/BV group). Depression, anxiety, locomotor activity, spatial learning, and memory were evaluated using the forced swimming test, elevated plus maze, open field test, and Morris water maze test, respectively. The brain contents of dopamine, serotonin, total antioxidant capacity (TAC), malondialdehyde (MDA), and Zn were estimated. The histopathological changes and immunoexpressions of neurofilament and GAP-43 protein in the brain tissues were followed. The results displayed that BV significantly decreased the ZNPs-induced depression, anxiety, memory impairment, and spatial learning disorders. Moreover, the ZNPs-induced increment in serotonin and dopamine levels and Zn content was significantly suppressed by BV. Besides, BV significantly restored the depleted TAC but minimized the augmented MDA brain content associated with ZNPs exposure. Likewise, the neurodegenerative changes induced by ZNPs were significantly abolished by BV. Also, the increased neurofilament and GAP-43 immunoexpression due to ZNPs exposure were alleviated with BV. Of note, BV achieved better results in the ZNPs + BV group than in the ZNPs/BV group. Conclusively, these results demonstrated that BV could be employed as a biologically effective therapy to mitigate the neurotoxic and neurobehavioral effects of ZNPs, particularly when used during ZNPs exposure.


Asunto(s)
Venenos de Abeja , Nanopartículas , Síndromes de Neurotoxicidad , Óxido de Zinc , Ratas , Animales , Masculino , Abejas , Ratas Sprague-Dawley , Proteína GAP-43/metabolismo , Proteína GAP-43/farmacología , Óxido de Zinc/metabolismo , Venenos de Abeja/farmacología , Venenos de Abeja/toxicidad , Dopamina/metabolismo , Dopamina/farmacología , Serotonina/metabolismo , Filamentos Intermedios/metabolismo , Antioxidantes/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Encéfalo
14.
J Neural Eng ; 20(5)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37524080

RESUMEN

Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Ratas , Femenino , Animales , Optogenética , Proteína GAP-43 , Laminina , Calidad de Vida , Médula Espinal , Miembro Anterior/patología , Miembro Anterior/fisiología , Recuperación de la Función/fisiología
15.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1739-1750, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282948

RESUMEN

This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Canales Catiónicos TRPM , Ratas , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Proteína GAP-43/metabolismo , Transducción de Señal , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/genética , Fibrosis
16.
Neuroreport ; 34(9): 471-484, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161985

RESUMEN

This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic nerve conditioning injury (SNCI) could promote the repair of the injured dorsal column. Differentially expressed miRNAs were screened according to the microarray, revealing that 47 known miRNAs were differentially expressed after injury and perhaps involved in nerve regeneration. Among the 47 miRNAs, the expression of miR-221-3p decreased sharply in the SNCI group compared with the simple dorsal column lesion (SDCL) group. Subsequently, it was confirmed that p27 was the target gene of miR-221-3p from luciferase reporter assay. Further, we found that inhibition of miR-221-3p expression could specifically target p27 to upregulate the expression of growth-associated protein 43 (GAP-43), α-tubulin acetyltransferase (α-TAT1) together with α-tubulin, and advance the regeneration of dorsal root ganglion (DRG) neuronal axons. Chondroitin sulfate proteoglycans (CSPGs) are the main components of glial scar, which can hinder the extension and growth of damaged neuronal axons. After CSPGs were used in this study, the results demonstrated that restrained miR-221-3p expression also via p27 promoted the upregulation of GAP-43, α-TAT1, and α-tubulin and enhanced the axonal growth of DRG neurons. Hence, miR-221-3p could contribute significantly to the regeneration of DRG neurons by specifically regulating p27 in the p27/CDK2/GAP-43 and p27/α-TAT1/α-tubulin pathways even in the inhibitory environment with CSPGs.


Asunto(s)
Inhibición Psicológica , Tubulina (Proteína) , Proteína GAP-43 , Axones , Proteoglicanos Tipo Condroitín Sulfato , Células Receptoras Sensoriales
17.
Neurochem Res ; 48(9): 2826-2834, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37148458

RESUMEN

Although the beneficial effects of curcumin, extracted from rhizomes of the ginger family genus Curcuma, on the repair and regeneration of nerves have been evaluated in vitro, there are few studies concerning its effects on axon myelination. Here, we used pheochromocytoma cells as an in vitro model of peripheral nerves. Pheochromocytoma cells were cultured alone or cocultured with Schwann cells and treated with increasing concentrations of curcumin. Cell growth was observed, and the expression levels of growth-associated protein 43 (GAP-43), microtubule-associated protein 2 (MAP-2), myelin basic protein (MBP), myelin protein zero (MPZ), Krox-20, and octamer binding factor 6 (Oct-6) were quantified. We found a significant increase in expression of all six proteins following curcumin treatment, with a corresponding increase in the levels of MBP, MPZ, Krox-20, and Oct-6 mRNA. Upregulation was greater with increasing curcumin concentration, showing a concentration-dependent effect. The results suggested that curcumin can promote the growth of axons by upregulating the expression of GAP-43 and MAP-2, stimulate synthesis and secretion of myelin-related proteins, and facilitate formation of the myelin sheath in axons by upregulating the expression of Krox-20 and Oct-6. Therefore, curcumin could be widely applied in future strategies for the treatment of nerve injuries.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Curcumina , Feocromocitoma , Humanos , Vaina de Mielina/metabolismo , Curcumina/farmacología , Proteína GAP-43/metabolismo , Feocromocitoma/metabolismo , Células de Schwann/metabolismo , Proteínas de la Mielina/metabolismo , Axones/metabolismo , Proteína P0 de la Mielina/metabolismo , Neoplasias de las Glándulas Suprarrenales/metabolismo
18.
Nat Cancer ; 4(5): 648-664, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37169842

RESUMEN

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.


Asunto(s)
Glioblastoma , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Proteína GAP-43/metabolismo , Proteína GAP-43/uso terapéutico , Axones/metabolismo , Axones/patología , Línea Celular Tumoral , Regeneración Nerviosa , Mitocondrias/metabolismo , Mitocondrias/patología
19.
CNS Neurosci Ther ; 29(11): 3378-3390, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37208955

RESUMEN

AIMS: Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS: Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS: DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS: We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dióxido de Carbono , Factor 7 Regulador del Interferón , Animales , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/uso terapéutico , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/uso terapéutico , Sinaptofisina/metabolismo , Sinaptofisina/uso terapéutico
20.
J Ethnopharmacol ; 311: 116400, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003402

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The combination of Polygoni Multiflori Radix Praeparata (PMRP) and Acori Tatarinowii Rhizoma (ATR) is often used in traditional Chinese medicine to prevent and treat Alzheimer's disease (AD). However, it is not clear whether the effects and mechanisms of the decoction prepared by traditional decocting method (PA) is different from that prepared by modern decocting method (P + A). AIM OF THE STUDY: The present study aimed to investigate the differences in the protective effects of PA and P + A on scopolamine induced cognitive impairment, and to explore its potential mechanism. MATERIALS AND METHODS: To assess the protective effect of PA and P + A on cognitive dysfunction, the mice were orally administrated with PA (1.56, 6.24 g kg-1•day-1) and P + A (1.56, 6.24 g kg-1•day-1) for 26 days before co-treatment with scopolamine (4 mg kg-1•day-1, i.p.). The learning and memory abilities of mice were examined by Morris water maze test, and the expressions of proteins related to cholinergic system and synaptic function were detected by the methods of ELISA, real-time PCR and Western blotting. Then, molecular docking technique was used to verify the effect of active compounds in plasma after PA administration on Acetylcholinesterase (AChE) protein. Finally, the Ellman method was used to evaluate the effects of different concentrations of PA, P + A (1 µg/mL-100 mg/mL) and the compounds (1-100 µM) on AChE activity in vitro. RESULTS: On one hand, in the scopolamine-induced cognitive impairment mouse model, both of PA and P + A could improve the cognitive impairment, while the effect of PA on cognitive amelioration was better than that of P + A. Moreover, PA regulated the cholinergic and synaptic functions by enhancing the concentration of acetylcholine (ACh), the mRNA levels of CHT1, Syn, GAP-43 and PSD-95, and the related proteins (CHT1, VACHT, Syn, GAP-43 and PSD-95), and significantly inhibiting the expression of AChE protein. Meanwhile, P + A only up-regulated the mRNA levels of GAP-43 and PSD-95, increased the expressions of CHT1, VACHT, Syn, GAP-43 and PSD-95 proteins, and inhibited the expression of AChE protein. On the other hand, the in vitro study showed that some compounds including emodin-8-o-ß-d-Glucopyranoside, THSG and α-Asarone inhibited AChE protein activity with the IC50 values 3.65 µM, 5.42 µM and 9.43 µM, respectively. CONCLUSIONS: These findings demonstrate that both of PA and P + A can ameliorate the cognitive deficits by enhancing cholinergic and synaptic related proteins, while PA has the stronger improvement effect on the cholinergic function, which may be attributed to the compounds including THSG, emodin, emodin-8-O-ß-D-glucopyranoside and α-asarone. The present study indicated that PA has more therapeutic potential in the treatment of neurodegenerative diseases such as AD. The results provide the experimental basis for the clinical use of PA.


Asunto(s)
Disfunción Cognitiva , Emodina , Ratones , Animales , Escopolamina/farmacología , Acetilcolinesterasa/metabolismo , Emodina/farmacología , Simulación del Acoplamiento Molecular , Proteína GAP-43/farmacología , Colinérgicos/farmacología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Aprendizaje por Laberinto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...